How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?

نویسندگان

  • Kean Wang
  • Kin Liao
  • Kheng Lim Goh
  • Kazuo Azuma
چکیده

Hydroxyapatite (HA) nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20-0.30 (HA mass fraction), beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters-further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is sensitive to HA concentration and crystallization temperature, and there exists a critical concentration level whereby the magnitude of the mechanical property is a minimum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Optimization of Mechanical Properties of PA6/NBR/Graphene Nanocomposite Using Central Composite Design

Thermoplastic elastomer of PA6/NBR reinforced by various nanoparticles have wide application in many industries. The properties of these materials depend on PA6, NBR, and nanoparticle amount and characteristics. In this study, the simultaneous effect of NBR and graphene nanoparticle content on mechanical, thermal properties, and morphology of PA6/NBR/Graphene nanocomposites investigated by Cent...

متن کامل

Chitosan-mediated crystallization and assembly of hydroxyapatite nanoparticles into hybrid nanostructured films.

The synthesis and subsequent assembly of nearly spherical nano-hydroxyapatite (nHA) particles in the presence of trace amounts of the polysaccharide chitosan was carried out employing a wet chemical approach. Chitosan addition during synthesis not only modulated HA crystallization but also aided in the assembly of nHA particles onto itself. Solvent extraction from these suspensions formed iride...

متن کامل

Detection of Clindamycin in Pharmaceutical Products using an Electrochemiluminescence Electrode based on a Composite of Ru(bpy)3²+, Eu2O3 Nanoparticle and Chitosan

In this study, the electrochemiluminescence (ECL) interaction of clindamycin and tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) was used to develop a sensitive tool for the detection of clindamycin based on modifying a glassy carbon electrode (GCE) with nanoparticles of europium oxide. The experiments showed that in the presence of these inorganic nanoparticles (Eu2<...

متن کامل

Elasticity Solution of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Panel

Based on three-dimensional theory of elasticity, static analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panel subjected to mechanical uniformed load with simply supported boundary conditions is carried out. In the process, stress and displacement fields are expanded according to the Fourier series along the axial and circumferential coordinates. From ...

متن کامل

Analytical and Numerical Investigation of FGM Pressure Vessel Reinforced by Laminated Composite Materials

In this research, the analytical and numerical investigation of a cylindrical shell made of functionally graded materials (FGMs) reinforced by laminated composite subjected to internal pressure is presented. Using the infinitesimal theory of elasticity, the analytical solution of stress and strain in vessels made of FGMs is studied first. It is assumed that the elasticity modulus follows a powe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015